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In this note, extensive phase-locked states in the low Reynolds number cylinder wake are
presented. Results of the present experimental investigation have expanded the scope of
previous work in the subharmonic and superharmonic ranges. The search and discussion for
these phase-locked states were carried out within the framework of nonlinear dynamical
systems. ( 1999 Academic Press
1. INTRODUCTION

AN AERO/HYDROELASTIC SYSTEM consisting of a cylinder under the forced excitation of various
frequencies and amplitudes in an imposed unidirectional flow of an unbounded domain has
been the subject of considerable research in the past three decades. Assessments of the
advances in the understanding of many aspects of this coupled cylinder-wake response can
be found in the overviews presented by Mair & Maull (1971), Sarpkaya (1979), and
Bearman (1984). It has been known that the vortex shedding frequency f *

s
can lock onto the

cylinder oscillation frequency f
e
and to multiples and submultiples of the cylinder oscillation

frequency. These are the well-established concepts of the commonly called primary (or
fundamental), subharmonic and superharmonic lock-on, respectively. Besides the primary
lock-on, which has attracted the most attention, due primarily to its significant engineering
applications, there have been three cases of phase-locked states ( f

e
/ f *

s
"1/2, 1/3 and 1/4)

observed in the subharmonic range, and two cases of phase-locked states ( f
e
/ f *

s
"2 and 3)

observed in the superharmonic range (Stansby 1976; Durgin, March & Lefebvre 1980;
Ongoren & Rockwell 1988; Williamson & Roshko 1988).

If one could investigate the aforementioned phase-locking phenomena from the perspect-
ive of nonlinear dynamical systems, it can readily be seen that, in general, they are resonant
responses which can exist in systems of coupled oscillators or oscillators coupled to periodic
external excitations. Following the terminology of nonlinear dynamical systems the
ratio X"f

e
/f

s
is defined as the uncoupled winding number and u"f

e
/f *

s
as the coupled

winding number, where f is the inherent vortex-wake formation frequency without external

s
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excitation, and f *
s

is the coupled wake oscillation frequency. Note that in the presence of
nonlinear coupling, the natural system oscillation frequency f

s
will shift to f *

s
. Basically,

phase locking can occur whenever the frequency of a harmonic of f
e

approaches some
harmonic of f *

s
and the frequencies of the two oscillators lock exactly into a rational value

f
e
/f *

s
. For a specific resonant state, the system displays a ‘‘resonant’’ type of region in the

A—X plane, where A("a/D, D being the cylinder diameter) is the nondimensionalized
cylinder oscillation amplitude. For a stationary cylinder, the vortex formation and shedding
process is a function of the Reynolds number in the low Reynolds number range. It can be
expected that f *

s
, and thus the phase-locked state, in addition to the cylinder excitation

frequency and amplitude, is also a function of the Reynolds number.
Olinger & Sreenivasan (1988) were the first to study this coupled cylinder-wake response

within the context of a low-order dynamic system. About 30 resonant horns in the region
X61 for Re"64—76 had been noted, with ten of them having resonable width, including
the primary phase-locked states. These phase-locked diagrams are included in Figure 1.
Their findings had apparently suggested a very complicated and busy picture of possible
body-wake interactions inherent in the present system. One obvious implication associated
with such a result is that in the common practice of scanning across the A—X plane with
discrete increments of A and X to study the wake characteristics at various resonant and/or
nonresonant states, great care must be exercised in selecting proper intervals for DA and DX
so as to have the necessary resolution. If one could selectively vary A and/or X in
a continuous manner, within certain limited ranges in the A—X plane, intuitively, one would
expect to be able to detect any reasonably fine wake structure within those ranges. This
could easily be realized by, say, oscillation of a flexible cable in a uniform flow (in such
a case, X is fixed and A is a continuous variable), or oscillation of a rigid cylinder in a shear
flow (A is fixed and X is a continuous variable with limited variations in Reynolds number),
or oscillation of a cable in a shear flow (both A and X are variables with limited variations in
Reynolds number). Nevertheless, one complex issue arises in these approaches. It is the
secondary flow effect in the body-wake interaction mechanism, which has to be properly
assessed (Woo, Cermak & Peterka 1989) before any results thus obtained can be used in
a nominally two-dimensional flow situation.

In a study of flexible cables with a smooth surface forced to oscillate at the first mode of
various frequencies and antinode amplitudes in a shear flow with linear velocity distribu-
tion, we discovered that, due to the crossing of several resonant horns in the A—X plane, the
vortex wake behind the cables tended to break down into a number of discrete resonant
cells, each with a corresponding frequency (Woo 1998). Within the range 0)5(X61)5,
besides the u"3/5, 2/3, 3/4 and 1/1 phase-locked states that have been reported by Olinger
& Sreenivassan (1988), 13 additional phase-locked states with u"4/7, 5/7, 7/9, 4/5, 5/6, 6/7,
7/6, 6/5, 5/4, 9/7, 4/3, 7/5 and 3/2 have been identified. These additional states were the basis
for the mapping of the resonant boundaries in uniform flow in this study.

2. EXPERIMENTAL METHODS

The phase diagrams of these newly identified phase-locked states in the A—X plane were
obtained with a rigid cylinder 0)5 cm in diameter in uniform flow. The wind tunnel used was
an open-return type which had a cross-section of 30]30 cm and a test-section of 150 cm in
length. The turbulence level was of the order of 0)1%.

The test-cylinder had an effective length (between end plates) of 20 cm. The end plates
were properly manipulated to ensure parallel vortex shedding. Oscillation of the cylinder
was provided using an electronic shaker and the oscillation amplitude was monitored with
a fibre optic vibration probe. A miniature hot-film probe, placed at 3)0D downstream
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of the test cylinder and 2)0D away from the wake centreline, was used for measuring the
wake frequency content. The frequencies of the cylinder oscillation and the wake were
determined with a spectrum analyzer. The test Reynolds number based on cylinder
diameter was 420—435.

3. RESULTS AND DISCUSSION

Figure 1 shows all of the phase-locked states presently known in the region 0)26(X61)5.
According to a series of experimental observations by Williamson & Roshko (1988) for
Re61000, oscillations of the cylinder can generate a number of classes of wake structure,
each with distinct geometrical characteristics. Their map of the vortex synchronization
pattern, with critical curves marking the transition from one vortex shedding pattern to
another, is superimposed on the phase-locked diagram and shown in Figure 1.

In Figure 1, following the notations given by Williamson & Roshko, ‘‘P’’ represents
a vortex pair, ‘‘S’’ represents a single vortex, and ‘‘C’’ represents coalescence. The richness
and complexity of the nonlinear dynamical phenomena existing in the present aeroelastic
system can clearly be seen. It should be noted that because the absolute instability of the
vortex wake [see, e.g., Monkewitz & Nguyen (1987)] is receptive to perturbations of finite
amplitude only, none of the tips of the resonant horns touch the X-axis.

As the cylinder oscillation amplitude increases, the possible range of a phase-locked states
also increases. This results in a widening of the resonant horn and consequently the possible
overlapping of several neighbouring resonant horns. One of the prominent features of
Figure 1 is the sheer dominance of the primary lock-on state in the A—X plane. As a result,
there exist two rather extensive boundary regions on both sides of the primary lock-on
state, where overlaps with a series of other phase-locked states have taken place. It can
readily be seen that at the oscillation amplitude level of A"0)1, the overlaps include the
u"5/6 (i.e. f *

s
/f

e
"1)2) and 7/6 ( f *

s
/ f

e
"0)86) resonant horns. At the A"0)29 level, the

overlaps include the u"3/4 ( f *
s

/f
e
"1)33) and 4/3 ( f *

s
/f

e
"0)75) resonant horns. Despite

the difference in Reynolds numbers, vortex shedding in these overlapped regions are,
respectively, characterized by the gradients of the first and second broken lines in Figure
2(a, b) given by Stansby (1976).

For the u"1/1 and 3/4 neighbouring phase-locked states, we have observed that
depending upon the position within the overlap region, the degree of vortex-wake mode
competition which leads to mode uncertainty varies (Ciliberto & Gollub 1984; Jensen, Bak
& Bohr 1984). Consequently, the wake can be in a state of slow undulatory oscillation, or
changing abruptly and intermittently between the 1/1 and 3/4 modes, or in a state of chaotic
oscillation. These results should have provided explanations to the findings of Stansby
(1976), that there are ranges on both sides of the primary lock-on where the ‘‘unforced
vortex sheddings’’ (note this is a clear misnomer) are more stable in frequency than the
corresponding vortex shedding for the stationary cylinder, and f *

s
/f

s
is approximately

proportional to f
e
/ f

s
. This shifting of f *

s
at the boundaries of the primary lock-on, from the

values found when the cylinder is stationary, can also be seen in some of the earlier results
presented by Bearman & Davies (1977) and Bearman & Obasaju (1982).

In the subharmonic range in Figure 1, the line of critical amplitude A
c

was given by
Olinger & Sreenivasan (1988), based on the results of iteration of the sine circle map. Below
the critical line, the vortex wake only exhibits periodic and quasi-periodic behaviour. Above
the critical line, due to widening of the resonant horns and the overlaps and competitions of
possible multiple phase-locked states, a universal transition to chaotic oscillation of the
wake occurs. This could be the underlying reason why Ongoren & Rockwell (1988) were
able to detect the u"1/2 phase-locked state at a lower oscillation amplitude of A"0)13



Figure 2. The variation of f *
s

/ f
s
with f

e
/f

s
in uniform flow with (a) a/D"0)10 and (b) a/D"0)29 for Re+9200

(0(f
e
/f

s
(2)3) and 7000 ( f

e
/f

s
'2)3) : s, increasing cylinder frequency; #, decreasing cylinder frequency [from

Stansby (1976)].
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(ReK855), while Williamson & Roshko (1988), who presumably conducted most of their
experiments at A'0)2, had failed to detect it and had also categorically concluded that no
synchronized wake pattern was observed in the 2/56u(1/1 zone. It is interesting to note
that for the u"1/3 and part of the u"2/5 resonant horns, even far above the A

c
line

Williamson & Roshko were still able to observe an orderly wake pattern in the 2P#2S
mode. Furthermore, above the primary lock-on in the superharmonic region, for oscillation
amplitude A, approximately under 1)0, despite the possible overlaps of several phase-locked
states, according to Williamson & Roshko, the wake is in an orderly coalescence mode (or
the so called ‘‘recovery mode’’ by Ongoren & Rockwell 1988). A closer investigation into the
causes of these obvious differences is currently under study.
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